Calibración de modelos de ondas de respuesta de deformación unitaria para la medición de vehículos pesados mediante una tecnologia BWIM
Files
Date
2022
Authors
item.page.contributor-advisor
Journal Title
Journal ISSN
Volume Title
Publisher
item.page.description-pages
Abstract
La tecnología BWIM ( Bridge Weigh-in-Motion) permite instrumentar puentes con sensores como galgas extensométricas, velocímetros y acelerómetros, para usar estos como estaciones de pesaje para vehículos en movimiento. El proyecto desarrollado consistió en estimar de forma teórica la onda de respuesta de un vehículo al pasar sobre un puente, lo que sirve de insumo para mejorar la precisión de sistemas BWIM en condiciones difíciles de controlar, como cuando des vehículos viajan a la vez sobre un puente. En este proyecto de usaron los datos de una prueba piloto en el puente sobre el Río Desjarretado en diciembre de 2019 y los datos de una prueba de calibración sobre un puente en Lebanon, Connecticut. A partir de los datos de campo se obtuvieron las ondas de respuesta experimentales de momento. Se generaron modelos por el método de elemento finito de ambos puentes, con la masa idealizada como concentrada en los nodos, amortiguamiento de Rayleigh y una matriz de rigidez condensada. Para simular el sistema se usó un sistema de espacio de estado en MATLAB. También se elaboró un modelo del puente sobre el Río Desjarretado en CSI Bridge. A partir de estos modelos se generaron las ondas de respuesta teóricas de momento, que se compararon con las ondas de respuesta de momento experimentales obtenidas anteriormente. Para mejorar los resultados del modelo, se empleó un algoritmo de optimización de recocido simulado. El proyecto logró generar resultados aceptables de las ondas de respuesta de momento teóricas del Puente Lebanon, más no completamente del puente sobre el Río Desjarretado, posiblemente debido a efectos no-lineales que no se consideraron en el modelo.
Inglés: BWIM (Bridge Weigh-in-Motion) technology allows bridges to be instrumented with sensors such as strain gauges, speedometers and accelerometers, to use them as weigh stations for moving vehicles. The project developed consisted of estimating the theoretical response wave of a vehicle when passing over a bridge, which serves as an input to improve the accuracy of BWIM systems in conditions that are difficult to control, such as when two vehicles travel at the same time on a bridge. This project uses data from a pilot test on the bridge over the Desjarretado River conducted in December of 2019 and data from a calibration test on a bridge in Lebanon, Connecticut. From the field data the experimental moment response waves were obtained. Models were generated by the finite element method for both bridges, with the mass idealized as concentrated in the nodes, a Rayleigh damping matrix and a condensed stiffness matrix. To simulate the system, a state space system in MATLAB was used. A model of the bridge over the Rio Desjarretado was also made in CSI Bridge. From these models the theoretical moment response waves were generated, which were compared with the experimental moment response waves obtained previously. To improve the model results, a simulated annealing optimization algorithm was used. The project was able to generate acceptable results from the theoretical moment response waves of the Lebanon Bridge, but not completely of the bridge over the Desjarretado River, possibly due to non-linear effects that were not considered in the model.
Inglés: BWIM (Bridge Weigh-in-Motion) technology allows bridges to be instrumented with sensors such as strain gauges, speedometers and accelerometers, to use them as weigh stations for moving vehicles. The project developed consisted of estimating the theoretical response wave of a vehicle when passing over a bridge, which serves as an input to improve the accuracy of BWIM systems in conditions that are difficult to control, such as when two vehicles travel at the same time on a bridge. This project uses data from a pilot test on the bridge over the Desjarretado River conducted in December of 2019 and data from a calibration test on a bridge in Lebanon, Connecticut. From the field data the experimental moment response waves were obtained. Models were generated by the finite element method for both bridges, with the mass idealized as concentrated in the nodes, a Rayleigh damping matrix and a condensed stiffness matrix. To simulate the system, a state space system in MATLAB was used. A model of the bridge over the Rio Desjarretado was also made in CSI Bridge. From these models the theoretical moment response waves were generated, which were compared with the experimental moment response waves obtained previously. To improve the model results, a simulated annealing optimization algorithm was used. The project was able to generate acceptable results from the theoretical moment response waves of the Lebanon Bridge, but not completely of the bridge over the Desjarretado River, possibly due to non-linear effects that were not considered in the model.
Description
Proyecto de graduación (licenciatura en ingeniería civil)--Universidad de Costa Rica. Facultad de Ingeniería. Escuela de Ingeniería Civil. Departamento de Ingeniería Estructural, 2022
Keywords
ALGORITMOS, ANALISIS ESTRUCTURAL (INGENIERIA) - COSTA RICA, CAMIONES - MEDICIONES - RIO DESJARRETADO (GUANACASTE, COSTA RICA), CARGAS DINAMICAS (PUENTES) - METODOS ESTADISTICOS, OPTIMIZACION MATEMATICA, PUENTES - COSTA RICA, RIO DESJARRETADO (GUANACASTE, COSTA RICA), SENSORES, SISTEMAS DE PESAJE EN MOVIMIENTO - CALIBRACION - COSTA RICA, TRANSPORTE DE CARGA - MEDICIONES - RIO DESJARRETADO (GUANACASTE, COSTA RICA)